The outcome of our present investigation confirmed the results of the original work [17] and of further works [18, 16] devoted to replication of the original experiments: the height and half-width of the resonance peak of the current through the glutamic acid solution at the cyclotron frequency of AC MF were comparable with those in the above works. The total reproducibility of the expected effects in the present work (70%) was much higher then those (~20%) reported in these works [18, 16]. Most likely it was due to longer duration of AC MF exposition applied in our work in every point of AC MF frequency as well as to the accuracy of the exposures provided in our facility in Rome, equipped with a patent pending exposure system, developed by Italian CNR and ISPESL institutions.
We were able to reveal a new effect. About 30% of made-up solutions in 30–45 min after their preparation manifested explicit (several tens of nA) temporary (about 20–40 min of duration) instability of the current through them (Fig. 3). If in the end of the period of such instability we started up the AC MF frequency scanning, the expected resonance effects arose every time: whether in the above described asymmetric resonance curve (70% of cases) or in the form of incomplete resonance curve as increase or decrease of the current (Fig. 4) at the vicinity of the cyclotron frequency of glutamic acid ion. So, at such instability in the effects of combined MFs at the cyclotron frequency arose always in either, one or another form. This instability of the current through the solution could be reliable sign of readiness of the solution for revealing the resonance effect on the action of combined DC and AC MFs. Below we'll return to interpretation of this phenomenon.
Earlier there were attempts to understand the physical mechanisms of resonance action of combined MFs. A. Liboff [2, 19], considering the motion of free ions under action of these MFs, supposed a mechanism similar to the one working in a living system like in a cyclotron. But this idea could be realized only in very large systems capable to include the long radius of ion rotation measured by meters. The idea [20, 12]of participation of parametric resonance in such sort of effects was not very fruitful for still unknown necessary low frequency harmonic oscillator in living systems. The Larmor precession could not help in this situation, not being such an oscillator because of lack of restoring force with proper parameters. Moreover, both of the above theories required a fine vacuum within the bounds of ion motion. The theory [17, 21] of combined action of DC and AC MFs on thermal motion of bound ions showed that the wide diversity of biological effects of such MFs would be only possible, if the damping coefficient of oscillation within a microvolume around the ions had been no more than the circular cyclotron frequencies of exposed ions. Really, in experiments with combined MFs [4] it was revealed that the half-width of resonance peaks was comparable with the circular cyclotron frequency of AC MF, or less than this frequency. In the present work the half-width of the resonance peak obtained by us was also less than the circular cyclotron frequency of AC MF applied. It could be considered as a good confirmation of the above theory, if such estimation of damping coefficient had corresponded to viscosity and damping processes in aqueous solutions. But unfortunately, it turned out to be essentially less than the estimations made on the basis of Physics of Continuous Media [22] that provoked distrust of some scientists concerning weak MFs biological effects. Of course, it would be possible to contest the competence of such estimations and to prove inapplicability of ideas and formulas of Mechanics of Continuous Media to the processes within a microvolume comprising a small number of molecules where the notion of "viscosity" itself loses its meaning. But it would lead to long unsuccessful debate. The situation with physical foundation of Bioelectromagnetics of weak MFs was rather difficult. Decision of this problem had come from Quantum Electrodynamics of Condensed Matter. For the last 15 years the physical ideas on water structure and on aqueous solutions have radically changed themselves under the influence of works by Italian outstanding physicist Giuliano Preparata.
According to Quantum Electro-Dynamical Theory by G.Preparata [23], the liquid water consists of two components: coherent and incoherent ones. The coherent component is contained within spherical so called "coherence domains" (CDs) where all molecules synchronously oscillate with the same phase. CDs are surrounded by the incoherent component where molecules oscillate with casual phases regarding each other. Diameters of CDs are measured by tenths of a micron, and at room temperature the total volume of domains is about 40% of the whole water media. The stability of these domains is great because the bond energy of water molecules within them is much more than the thermal noise energy. Within CDs the viscosity and oscillation damping of coherent water essentially differ from ones of incoherent water.
Del Giudice et al. [15] considered the motion of a glutamic acid ion inside CD under the influence of combined DC and AC MFs at the cyclotron frequency of this ion. They found that in spite of a huge radius of the orbit on which this ion would rotate if it have performed the free motion under the influence of MFs at room temperature, within CD it really has to move along the spherical border of CD, performing the internal reflectance without any friction and energy loss. At resonance action of the cyclotron frequency the ion is accelerated by the MFs, increasing its kinetic energy till its escape from CD. The glutamic acid ions leaving CDs cause the peak of the current through the solution.
In a recent work Zhadin and Giuliani [24]theoretically revealed the mechanism of capture of glutamic acid ions by CDs, the mechanism of formation of "mixed CDs" in which glutamic acid ions become to participate in the coherent oscillations on an equal rights with water molecules, and the cyclic mechanism of successive changing of different ionic forms of glutamic acid molecules. At pH~3 in aqueous solution the glutamic acid ions exist in the form of so called "zwitterions" – long dipole ions with the total charge equal to zero. Due to its big length the zwitterions have big dipole moments. After preparation of the solution the zwitterions gradually form many wide clusters in the solution. Simultaneously the formation of water CDs all over the solution is developing. In the places of zwitterion cluster location, the water CDs inevitably capture numerous groups of glutamic acid molecules in the zwitterion form. This process is promoted by similarity between some parts of spectra of water molecules and glutamic acid ones, that allows to enter glutamic acid molecules into the process of forming CDs where they could participate in coherent oscillations pari passu with water molecules and have the same high bond energy within CD. The authors of the above work named such sort of CDs as "mixed CDs". It is necessary to mark that by no means all amino acids and all other substances are able to form mixed CDs. It depends on the spectral mutual compatibility between this substance molecules and water molecules, as well as on physicochemical features of the aqueous solution.
Due to the high bond energy which is much more than the energy of hydrogen bonds, the hydration shells of zwitterions dissolve among coherent water molecules within mixed CDs. (By the way, it explains the problem of long standing: why the cyclotron frequency definition takes into account of ion mass without its heavy hydration shell and only such cyclotron frequency is effective in the experiments). The energy of coherent oscillations close to the energy of ionization of glutamic acid molecule transforms zwitterions into usual ions of glutamic acid that further increases its kinetic energy in accordance with the mechanism of Del Giudice et al. [15] under the influence of combined DC and AC MFs and leads to its final escape from mixed CDs into the surrounding incoherent water, when forming the resonance peak of current through the solution. Turned out to be again in the media with pH~3, the usual ions of glutamic acid move to zwitterion form and whereupon the solution comes to the initial state.
This pattern puts some idea into the mind that electric instability in the solution after its preparation is connected with the processes of formation of zwitterion clusters and mixed CDs in the solution. It also makes understandable, why resonance action of combined MFs arises into particular prominence namely at the end of the period of instability, when the total number of mixed CDs is maximal. The reasons of not full reproducibility of the effects and even their total lack at weakly prominent electric instability or its absence become clear up too.
In Experimental Results section we described various manifestations of MFs effects, different time periods of their arising after the moments of the solution preparation in different experiments up to the total absence of any effect in some experiments. It could be connected with gradual disappearance of mixed CDs in the experimental solution. It is also possible that all this uncertainty is connected with insufficient stabilization of temperature within solutions in the course of the experiment. The solutions were prepared at the same temperature and then poured into the cell within the heat-controlled chamber. However, the temperature of the investigated solution in the cell could change a little during all the experiment. It is quite possible that formation of mixed CDs is very sensitive to the solution temperature.
In the work by Comisso et al. [16] there was a suggestion about possible essential role of the processes developing in immediate proximity to the surface of the electrodes in formation of resonance effects. In connection with this, we performed a series of experiments with the electrodes carried out of the cell and pressed to the external surfaces of the cell walls. Using the special coil detector of the electric state of the solution in these experiments, we obtained the prominent resonance peaks denoting the formation of resonance peaks of the current occurring in more or less degree all over the whole volume of the solution. It is in a good agreement with the above described pattern of the development of MFs resonance effects.
The asymmetry of the resonance peaks obtained in all our experiments is, most likely, connected with comparatively slow processes in the development of current peaks within the incoherent component of the water medium and of reestablishment of the initial state of the solution. If this is the case, then at the back direction of scanning it would be possible to expect the inversion in the asymmetry of the resonance peak. It could be interesting to verify it in the further development of these investigations.