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Abstract

Background: We have developed magnetic cationic liposomes (MCLs) that contained magnetic
nanoparticles as heating mediator for applying them to local hyperthermia. The heating
performance of the MClLs is significantly affected by the property of the incorporated magnetite
nanoparticles. We estimated heating capacity of magnetite nanoparticles by measuring its specific

absorption rate (SAR) against irradiation of the alternating magnetic field (AMF).

Method: Magnetite nanoparticles which have various specific-surface-area (SSA) are dispersed in

the sample tubes, subjected to various AMF and studied SAR.

Result: Heat generation of magnetite particles under variable AMF conditions was summarized by
the SSA. There were two maximum SAR values locally between 12 m2/g to 190 m2/g of the SSA in
all ranges of applied AMF frequency and those values increased followed by the intensity of AMF
power. One of the maximum values was observed at approximately 90 m2/g of the SSA particles
and the other was observed at approximately 120 m2/g of the SSA particles. A boundary value of
the SAR for heat generation was observed around | |0 m2/g of SSA particles and the effects of the
AMF power were different on both hand. Smaller SSA particles showed strong correlation of the
SAR value to the intensity of the AMF power though larger SSA particles showed weaker

correlation.

Conclusion: Those results suggest that two maximum SAR value stand for the heating mechanism

of magnetite nanoparticles represented by hysteresis loss and relaxation loss.

Background because of its difficulty of raising the objective tissue tem-
Hyperthermic cancer treatments have been used for many  perature properly [2]. There Magnetic Fluid Hyperthermia
years, particularly in anticancer therapy [1]. However, effi- ~ (MFH), by using the magnetite (Fe;O,) as a preferable
ciency of the treatment did not satisfy in the clinical scene,  heating source, due to its strong magnetic property and
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low toxicity, is a promising approach for treating cancer
[3]- MFH can raise the temperature in the tumor locally up
to 41-46°C if magnetic fluid was selectively introduced
and therefore kill tumor cells directory without damages
of ambient healthy cells. In this technique, magnetite par-
ticles that have ferromagnetic or superparamagnetic prop-
erty are dispersed into the aqueous phase and introduced
into tumor cells. In our previous study, magnetite nano-
paticles covered with the cationic liposome (magnetite
cationic liposomes, MCLs) to show higher adhesion prop-
erties to the cell surfaces that is charged negatively [4-6].
In previous animal studies, we have demonstrated the
efficacy of hyperthermia induce using MCLs in several
types of tumor model; for instance, B16 melanoma in
mice [7,8], T9 glioma in rats [6,9], osteosarcoma in ham-
sters [10], prostate cancer in mice [11] and MM46 mouse
mammary carcinoma [12]. magnetite cationic liposomes
(MCLs) Introduced magnetite particles transform the
energy of the AC magnetic field into heat by several phys-
ical mechanisms, and its efficacy strongly depends on the
frequency of the outer field as well as the particle's mag-
netic properties correlated to its diameter [3,13].

In our present study, we drew attention to the specific-sur-
face area (SSA) as an represented mediator for expressing
particle size and microscopic structure. The SARs of those
magnetic particles were studied under several conditions
of AC magnetic field or strength of the power and the fre-
quency were changed. Here, SAR is defined as the energy
amount converted into heat per unit time and unit mass.

Methods

Materials

Magnetite nanoparticles with different diameters (defined
by SSA and confirmed by TEM observation) were pur-
chased from Toda Kogyo Co. (Hiroshima, Japan). The SSA
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of each samples were determined by BET method. Mag-
netic properties of those samples were also measured.
Table 1 shows a list of magnetite nanoparticles used in the
present paper. The shapes of all the magnetite samples
were determined as beads like particles by TEM method.
Average diameter and polydispersity index of the magnet-
ite nanoparticles were also measured by the DLS method
after dispersed into distilled water. Saturated magnetiza-
tion and coercivity was measured by vibrating sample
magnetometer (VSM-5, Toei Industry Co. Ltd., Tokyo,
Japan).

Kappa-carrageenan and magnesium chloride were pur-
chased from Wako chemicals (Osaka, Japan).

Preparation of the heating samples

Magnetite nanopartiles were dispersed in distilled water
with the same concentration of 20 mg/ml and treated
with ultrasound sonication for 30 minutes. Those mag-
netite dispersions were filled in the cylindrical polypro-
pylene tubes that has 15 mm inner diameter with the
kappa-carrageenan and the dispersions were gelated by
appropriated dose of magnesium chloride. Temperature
increase was caused by the upwardly generated AC mag-
netic field from the surface of the irradiation coil of the
AMF radiator. As a whole, 2 g of the samples that con-
tained 5 mg of magnetite nanoparticles were put in the
sample tubes. As an control, the kappa-carrageenan solu-
tion was put into the sample tube without magnetite dis-
persions, and gelated by magnesium chloride.

Heating experiments

In the present study, the alternating-magnetic-field (AMF)
generator incorporating a solenoid with a ferrite core (FC)
was used [11]. Magnetic field was arranged to change its

Table I: Physical properties of the magnetite particles for the experiments

Particle diameter(nm)

Sample  TEM method (nm) DLS method Saturated magnetization (Am2/kg)  Coercivity (k A/m)  SSA (m2/g)
Diameter (nm)  Polydispersity Index
A 120 1986 0.57 825 7.2 12
B 40 1657 0.45 75.0 10.4 30
C 14 539 0.28 67.7 6.4 57
D Il 109 0.15 63.2 3.0 74
E Il 109 0.21 64.1 2.3 84
F 10 109 0.25 57.9 1.2 92
G 10 146 0.23 575 6.0 107
H 10 93 0.30 51.6 3.0 121
| 10 84 0.18 52.9 0.32 125
J 10 94 0.29 49.7 1.4 131
K 10 107 0.19 48.9 35 145
L 10 130 0.25 474 2.6 159
M 10 105 0.22 38.1 0.9 190
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frequency and amplitude. A list of those arrangements of
the experimental courses is shown in Table 2.

All samples which were fleshly prepared for the present
study were put on the irradiation coil as shown schemati-
cally in Fig. 1. Determination of magnetic field intensity
over the ferrite core of our apparatus under AC field is very
difficult. Therefore, the magnetic field intensity under DC
field is represented. Indeed, the intensity under DC field
was measured to be 32.5 kA/m at 13.0 W and it will be
proportional to the power.

The temperature of the samples were measured by using
optical thermometer (FX-9020; Anritsu Meter Co.,
Tokyo). After the experiments, all samples were dissolved
by adding 12N hydrochloric acid and diluted to measure
the iron contents by the potassium thiocyanate method
[14].

Cnsequently we determined the magnetite concentration
in the sample tubes precisely. The control was also
exposed under the AMF, and confirmed that has no affec-
tion to heat generation. The SAR values of the samples
were determined from the time dependent calorimetric
measurements.

Results

Physical and magnetic properties of 13 magnetic
nanoparticle samples

In the present study, 13 magnetic nanoparticles that are
various diameters of the same materials Fe;O, were pre-
cisely prepared by the same way. As shown in Table 1,
magnetite average diameters measured by DLS method
were almost ten times larger than that of the primary par-
ticles measured by TEM method. We considered that some
kind of the aggregations of the primary particles occurred.
Both average diameters seem to correlate well with each
other. However, extremely large SSA was obtained even in
the similar DLS diameter, i.e. 74 m2/g of SSA in sample D
and 190 m2/g of SSA in sample M.

For better understanding on physical characteristics of
particles, we displayed TEM photographs of particles (Fig.
2). All samples showed even globular or cubic shapes and
the rod-shaped particles and larger particles were not
included. Polydispersity index of DLS was also listed in

Table 2: Variation of the frequency and the electrical power for
AMF irradiator

Applied frequency Applied power (kW)

360 kHz 1.6,3.5,52
200 kHz 2.5,6.0,13.0
110 kHz 25,6.0, 13.1

http://www.biomagres.com/content/6/1/4

Sample

WE

\l
Magnetic flux

™

Solenoid coil
T e

Figure |
lllustration of experimental apparatus for SAR meas-
urement.

Table 1. It was found there was not any particle with
extremely wide size distribution.

Saturated magnetization and coercivity were also meas-
ured as magnetic properties. These magnetic properties
were not correlated with DLS diameter. However, it was
found that saturated magnetization was strongly corre-
lated with SSA.

Temperature profiles by AC magnetic field irradiation
Figure 3 shows the typical profiles of the time-dependent
temperature curve during the AC magnetic field irradia-
tion. The SAR values (W/g) can be calculated by the fol-
lowing equation [15]:

sar=c2 1

At Mg '

where C is the sample-specific heat capacity which is cal-
culated as a mass weighed mean value of magnetite and
water. In this study, a heat capacity for magnetite C,,,, was
negligible by its low contents in the samples as described

below, therefore we use a heat capacity for water C,., =

4.18 J/gK as the sample's heat capacity. AT/At is the initial
slope of the time-dependent temperature curve. As shown

in Fig. 3, there are as good as the linear relations in the first
rising of the temperature, we use the linear relations in 0-
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Figure 2
SEM photographs of sample C, G, and K.
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5 minutes intervals for calculating. AT/At m,, . is the mag-

mag
netite content per gram of the sample tubes. In this study,
the average value of m_,, was about 5 mg/g. The SAR val-

ues of the samples calculated by the equation (1) are
shown in Table 3 and plotted against the SSA in Fig. 4.
There were two local maximum values of the SAR
observed. Also, the SAR was replotted against the power of
the AC magnetic field (Fig. 5). The slopes of correlation
curve were also calculated in Table 3. As shown in Fig. 5,
it was found that heat generation by two processes was
found against SSA; In the case of samples with more than
110 m2/g of SSA, SAR becomes plateau under excess AC
power, but depends on frequency, and SAR depends on
AC power in the case of samples with less than 110 m2?/g
of SSA.

mag

Discussion

In the present study, 13 magnetic nanoparticles that are
various diameters of the same materials Fe;O, were pre-
cisely prepared by the same way and SAR was measured
under various AC frequency and AC power. Such summa-
rized data have been firstly reported by us in the present
paper. To the best of our knowledge, it was firstly found
that SSA is better index for SAR.

From polydespersity index of DLS listed in Table 1 and
TEM photographs, it was found that there was not any
particle with extremely wide size distribution. Therefore,
it is considerable that there are different degree of aggre-
gates and different packing density of aggregate, because
large SSA was obtained even in samples with similar DLS
diameter. It is considerable that samples with high pack-
ing density behave as a multidomain particle and higher
saturated magnetization was obtained.

In Fig. 4, we showed the SARs of the magnetite particles
which were measured under variable AMF conditions.
There were two local maximum values of the SAR
observed when the SARs were plotted against to the SSAs,
which were approximately 90 m2/g (a) and 120 m?/g (b)
separately in all the experimental intensities of AC mag-
netic fields.

It has been reported that the SAR of magnetite particles in
an external AC magnetic field can be attributed to two
kinds of power loss mechanisms; one is hysteresis loss
and others is relaxation loss [16-18]. The grade of these
two power losses depends on the particle sizes. The heat-
ing due to hysteresis losses are caused by magnetic
domain wall displacements under an AC magnetic field.
Therefore, it has been reported that the hysteresis loss
induced heating needs larger size of magnetic multido-
main particles. On the other hand, heating induced by

Page 4 of 9

(page number not for citation purposes)



BioMagnetic Research and Technology 2008, 6:4 http://www.biomagres.com/content/6/1/4

Sampe C
55.0
——110kHz, 6.0kW
L —/— 200kHz, 60kW
8 450 —O0—360kHz, 5.2kW
g 400
o
235.0
@ 300
'__
250
20'0 1 1 1
0.0 5.0 100 15.0
Time {min?
Sampe G
55.0

—O0—110kHz, 6.0kW

500 | _A—200kHz. 6.0KW /
5450 | —O—360kHz, B2kw
S

5 400
o
E'BEO
@ 300

250

200 : . s

00 5.0 100 15.0
Tire C(min)
Sampe K
550
£55 —0o—110kHz, 6.0kW
: —— 200kHz, 6.0kW

5450 || —O—360kHz, 5.2kW

200 : - ;
0.0 5.0 100 15.0
Tirre {rmind

Figure 3
Temperature increasing profiles for several SSA samples and experimental conditions.
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SAR plots against SSA of the particles. The experiments performed under the several AMF frequency and power.
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Typical profiles of AMF power dependency to the SAR values represented by sample (C), (G), (K).
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Table 3: Effects of SSA of the particles on SAR value. relaxation loss under an AC magnetic field occur to
110 ko smaller particles that has not domain wall and consists of
the single domain structure [18].
Samples SAR (WI/g) Slope
2.5 kKW 6.0 kW 13.1 KW The SAR values for the particles below the dividing line
which exist around 110 m2/g of SSA seemed more suscep-
A 2.08 16.25 42.60 3.85 tible against to the power of AC magnetic field in all fre-
B 1.75 16.32 59.30 5.58 quencies as well. As shown in Fig. 5, it was found that heat
C 6.19 25.10 57.08 4.8l generation by two processes was found against SSA. It is
D 12.84 40.80 69.2| 5.18 strongly suggested that these are happened by clearly dif-
|E= :;lz ;g?g 27?2 ;Z; ferent mechanism for heat generatiqn. It is likely_ that
G 12.86 22 44 29.03 | 45 those are relaxation loss and hysteresis loss, respectively,
H 6.08 8.87 12.77 0.63 although we could not mention the reason why local
I 8.14 13.85 18.16 0.91 maximum is 120 m2/g and that was not the smallest SSA
J 6.28 10.95 15.37 0.83 in the particles. More profound discussion might be
K 373 8.11 9.78 0.53 revealed by further experiment. From Table 1, it was
L 244 457 6.54 037 found that saturated magnetization was strongly corre-
M 020 227 446 042 lated with SSA. In the hysteresis loss, SAR is defined by the
200 kHz area of hysteresis curve. This might be one of the reasons
why SSA is better index for SAR, although the reason why
Samples SAR (W/g) Slope saturf.ited magnetization is correlated with SSA still
2.5 kW 6.0 kW 13.0 kW remains to be elucidated.
A 420 14.83 56.63 5.13 Since the heating mechanism of the magnetite nanoparti-
B 4.18 16.54 78.53 7.33 cles of different SSA have different attributions from the
c 7.25 2823 85.06 751 intensity of AMF, it is considerably needed to optimize the
D le.8l 50.48 93.54 7.14 particle SSA for the treatment of MFH. As shown in Fig. 5,
IFE :;Z; ‘;’ggg Z:Z(Z) 23; the diagram of SAR of the sample K, which has larger SSA,
G 1928 36.34 5372 317 was maintained virtually constant against to the power of
H 10.99 18.02 26.46 | 44 AMF in all range of its frequency (Slopes are closed to 0).
| 12.58 24.25 35.84 214 Therefore for the MFH treatment, when the magnetite par-
J 12.29 19.06 27.43 141 ticles those have more than 110 m2/g of SSA and less than
K 8.42 13.93 18.12 0.88 10 nm of particle diameter are used as the heating media-
L 5.83 9.96 12.83 063 tor, we expect the stable supply of heat could be per-
M 268 313 445 0.17 formed imperviously to the power of AMF.
360 kHz . .
Comparably, smaller SSA particles generates heat linearly
Samples SAR (Wig) Slope against the s_trength of the AMF (Slopgs in Table 3 are
1.6 kW 35 kW 52 kKW large). That is to say, smaller SSA particles seem to be
suited for treating various region of the body part for the
A 0.59 0.10 3.84 121 MFH treatment because the SAR curve for the smaller SSA
B 1.02 2.59 6.34 1.47 particles are adjustable and easily increased linearly by
c 2.81 8.03 16.67 3.83 manipulating the power of AMF. In addition the dose of
D 4.28 14.72 24.82 5.70 the smaller SSA particles possibly could be hold down
E |7(f338 ii;g gi:T ':g’: when the high-power of AMF are appliFable for treatment.
G 1370 2942 3932 714 It would be also able to heat deep portion of the body part
H 10.50 16.79 19.64 255 sufficiently by controlling higher dose of the magnetic
| 10.05 19.80 29.18 53] particles or intensity of the AMF power.
J 10.80 20.06 25.08 3.99
K 7.46 15.30 19.05 3.24 As for the AMF frequency, it should be noted that lower
L 5.76 10.56 14.14 233 ones within the range of 50 kHz to 100 kHz of AMF are
M 0.96 4.22 5.09 1.16

recommended for human therapy depending on the body
cross-section and tissue conductivity [7,14]. When we use
smaller SSA particles, we could overcome the disadvan-

Slopes represent the dependency of the AMF power to the SAR
value. The experiments performed under the several AMF frequency
and power.
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tage of smaller frequency of the AMF by controlling the
intensity of power of the AMF.

Our group is now planning to the application to actual
cancer patients. SSA and AC frequency was one of the
important criteria for magnetite particle preparation.
Actual apparatus for cancer patient was already designed
and fabricated, that is AC frequency of 110 kHz. Sample C
or D was applicable to actual cancer treatment.

In the present study, we observed collateral evidence that
the SAR of the magnetite nanoparticles in an external AMF
are induced by two heating mechanisms that depends on
the SSA of the particles. The critical change of the SAR
value was observed at approximately 110 m2/g of the SSA
which exists among the 10 nm diameter particles. This is
likely due to the structure change of magnetic domain.
Additionally, we suggested that heating property of these
two mechanisms is defined under the different influences
of the frequency and the power of the AC magnetic field.

Conclusion

In conclusion, we provided the basic data for selection of
the magnetite particles for the MFH treatment along with
the treating part of the body or purpose of the treatment,
and we suggested that for the selection of the particles,
SSA could be one of the good criteria.
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