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Abstract
Background: In recent years the visualization of biomagnetic measurement data by so-called
pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods: The physical basis of these intuitive maps is clarified by means of analytically solvable
problems.

Results: Examples in magnetocardiography, magnetoencephalography and magnetoneurography
demonstrate the usefulness of this method.

Conclusion: Hardware realizations of the HC-transformation and some similar transformations
are discussed which could advantageously support cross-platform comparability of biomagnetic
measurements.

Background
In 1976 Cohen et al. introduced in a sequence of publica-
tions a method to construct so-called pseudo current den-
sity- or arrow-maps from multichannel biomagnetic
signals obtained by magnetocardiography (MCG) [1-4].
The purpose was to transform the measured magnetic
field values in a way that the resulting maps could be
more easily related to the underlying current density dis-
tribution. Later this method was frequently referred to as
the Hosaka-Cohen (HC) transformation and its perform-
ance was analyzed in some detail [5,6]. However, it did
not find widespread application until recent years, when
a kind of renaissance of this method occurred. Recently,
the HC-transformation is used in MCG [7-21], fetal MCG
[22-24], magnetoencephalography (MEG) [25-27] and
magnetoneurography (MNG) [28].

A reason for this new development may be the advance of
computing power and visualization tools. In addition, in
former times system designers preferred to display mag-
netic field maps (MFM), since they were interested in the
measured physical quantity. However, for the end-user -
the physicians- MFMs are not very instructive, as the MFM
maximum values do not occur above those positions
where the generating currents are flowing.

Figs. 1, 2, 3 illustrate this point: it shows two instants of
the atrial excitation marked by the cursors in the MCG-
butterfly-plot in Fig. 1 (a butterfly-plot is obtained by
superpositioning the MCG-Signals of all channels in one
display). The respective pseudo current density (PCD-)
plots show very clearly and intuitively the preceding acti-
vation over the right atrium (Fig. 2, right) followed by that
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over the left atrium (Fig. 3, right), whereas the MFMs in
Fig. 2 (left) and in Fig. 3 (left) require expert knowledge to
interpret them in the same way.

Other features of modern pseudo current density maps
helped to spur interest:

i) while Hosaka and Cohen coded the information of the
pseudo current density amplitude into the size of the
arrows the recent display techniques added an underlying
false-colour scaling to the maps.

ii) visually attractive results are achieved, if a sequence of
maps is presented as an animated clip. Then the spatio-
temporal dynamics of the electrophysiological function
are more easily perceptible.

The question that remains open is: what do pseudo cur-
rent density maps really show? Already the term "pseudo"
indicates that the real current density distribution is differ-
ent and may deviate considerably. This is already evident
when considering the fact that the PCD-maps are only 2D-
projections of a 3D reality. The initial papers of Hosaka

and Cohen just gave an empirical explanation, why their
maps produce an approximate image of the underlying
current density distribution. Later explanations e.g. by
other authors [7] relating the curl of the measured mag-

netic induction curl  with the current density  were

incorrect and misleading. Therefore in the following chap-
ters an analytically based calculation is presented that
illustrates the physical justification and the limitations of
this visualization method.

This paper will not deal with minimum norm estimates or
other inverse methods calculating the current density
from field maps. Rather, the Hosaka-Cohen transforma-
tion provides just another representation of the measured
magnetic field by a postprocessing of the magnetic field
data. The underlying current distribution does not enter in
the calculation of the HC-transformation. We intend to
clarify in which way certain features of the PCD-maps can
nevertheless be related to the underlying current distribu-
tion. Some common fallacies in the interpretation of PCD
maps are elucidated.

B j

Butterfly plot of a multichannel magnetocardiogrammFigure 1
Butterfly plot of a multichannel magnetocardiogramm. The two cursors mark the time instants related to the visualizations 
shown in Fig. 2 and 3 respectively.
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Finally we would like to stress the utility of PCD maps to
provide a visualization of measurement results obtained
by biomagnetic systems with very different sensor config-
urations. Whether magnetometers, planar gradiometers
or vector magnetometers are used always similar PCD
maps may be computed and will thus allow a simple
cross-platform, i.e. multicentre comparability of biomag-
netic investigations.

Methods
Construction of pseudo current density maps
PCD-maps are obtained from magnetic field values at a
number of points in space [29,30]. Multichannel meas-
urement systems, containing a number of SQUIDs (super-
conducting quantum interference devices) as magnetic
field sensors, are used to measure the magnetic fields gen-
erated by electrophysiological functions in the heart
(MCG = magnetocardiography), the brain (MEG = mag-
netoencephalography) or in other muscles or nerves
(MNG = magnetoneurography). In MEG, helmet systems
are used, where the SQUIDs are arranged on the surface of
a sphere. For other applications, the SQUIDs are distrib-
uted more or less in a plane.

For the following discussion a simple current dipole source
with current dipole moment

may be considered, i.e. a source-drain configuration with

vanishing source-drain distance with unit vector  and a
source strength of I. This current element generates a mag-

netic flux density ( ) which – according to the law of
Biot-Savart – is expressed as

Often, planar SQUID-systems measure only one compo-

nent of the -field, e.g.Bz. Fig. 4 shows the Bz-distribution

calculated with (2) for a measurement plane of size 40 cm
× 40 cm which is positioned 10 cm above a current dipole

with a dipole moment of 1 μAm. The direction of the
dipole within the x-y-plane is diagonal to the coordinate
system and the magnetic flux density distribution is pre-

p Is= ( )1

s

B r

B r
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π
0

34
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Visualization of the atrial activation for the first time instant marked by a cursor in Fig.1Figure 2
Visualization of the atrial activation for the first time instant marked by a cursor in Fig.1. Left: Bz-map drawn as isocontour 
maps with a magnetic flux density difference of 0.5pT between adjacent contour lines (red: positive, i.e. directed towards the 
subject; blue: negative; black: Bz = 0). Right: the corresponding pseudo current density map.
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sented as an isocontour plot. The difference between two
adjacent contour lines corresponds to a magnetic flux
density difference of 0.5 pT. Red lines correspond to pos-
itive Bz-values and blue lines to negative Bz-values and the

black line marks Bz = 0. The pseudo current density (x,

y) in the map in Fig. 5 is gained from the Bz-values by the

following transformation

Thus the slopes of the Bz-surface function determine the

amplitude and the direction of the pseudo current arrows

(x, y). x and y are the unit vectors in x- and y-direc-

tion.

In practice the partial differential ratios  and  are

approximated by the difference ratios  and .

They in turn may be easily obtained by utilizing the

smooth surface function  that

has been used to construct the map in Fig. 4.

The arrows drawn in Fig. 5 represent the -vectors at the

respective coordinates. However, only the strongest -
vectors are drawn to obtain a clearer picture. Although the

amplitude of  is coded as the arrow length, a map with
just those arrows is not as intuitive as the image shown. By

underlying a false-color map scaled by the amplitude | |
a considerable visual enhancement of the information is
achieved.

As to be anticipated the maximum amplitude occurs just
above the source and also the directions of the central

strongest arrow  and that of the current dipole  coin-

cide. On the other hand the PCD-map does not reproduce
the point-like character of the current dipole! It is rather a
characteristic point-spread function of the source.

Another interesting point to mention: the Hosaka-Cohen
transformation utilizes two terms of
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Visualization of the atrial activation for the second time instant marked by the respective cursor in Fig.1Figure 3
Visualization of the atrial activation for the second time instant marked by the respective cursor in Fig.1.
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As – according to Maxwell – curl  = μ0  some authors

concluded that this is the rationale for the pseudo-current

density maps. However, at the sites where  is measured

the current density is zero and thus also curl  = 0 holds.

Hence no direct relation between  and  and curl 

exists at the location of the sensors. But since curl  = 0
everywhere in the measurement space, the two terms that

represents  must exactly compensate the remaining
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Bz-map of the magnetic flux density calculated from Biot-Savart's law for a current dipole (|| = 1 μAm) at a position 10 cm below the map's plane with a x-y-projection as indicated by the arrowFigure 4

Bz-map of the magnetic flux density calculated from Biot-Savart's law for a current dipole (| | = 1 μAm) at a position 10 cm 

below the map's plane with a x-y-projection as indicated by the arrow.
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terms of curl  (from equation 4). This in turn leads to
the conclusion that also the remaining terms lead to
equivalent arrow maps, as it is discussed later in this
paper.

Results
Pseudo current density maps of analytically solvable 
models
A single current dipole alone (i.e. without considering
return currents) and the application of Biot-Savart's law
describe a too artificial, non-physical situation. The phys-
ical background of the PCD-maps may be evaluated by:

i) modeling the MCG by a current dipole in a conductive
half space, and

ii) modeling the MNG by an extended linear or curved
source [28,31] or by a train of current dipoles in a con-
ducting half space and

iii) modeling the MEG by a current dipole in a conductive
sphere.

Of course also those are quite crude models of the reality
but they represent basic models of sound physics and can
be treated completely analytical. Thus the relations

B

Psydo current density map corresponding to Fig.4Figure 5
Psydo current density map corresponding to Fig. 4.
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between source and PCD-map and the role of curl  are
exactly traceable.

Current dipole in a conductive half space

To a first approximation the MCG may be modeled by a

current dipole  = (px, py, pz) at 0 = (x0, y0, z0), represent-

ing the heart's electrical activity, in a conductive half
space, representing the torso. The coordinate system is
chosen such that z = 0 at the boundary between the
"torso" with constant conductivity and the non-conduct-
ing space containing the measurement sites.

The magnetic flux density at coordinate  = (x, y, z) above
the half space (z > 0) is according to [32] given by

with  =  - 0, R = | |, K = R (R + z), and

, where ∇ is the nabla operator.

In Cartesian coordinates  can be explicitly written as

with X = (x - x0), Y = (y - y0) and Z = (z - z0).

An inspection of (6)–(8) shows that

• pz does not contribute to ( ) above z > 0,

• Bx( ), By( ), and Bz( ) do not depend on the position

of the torso boundary as long as it is between measure-
ment point and current dipole,

• the difference to the  – field calculated by Biot-Savart's
law for an isolated current dipole occurs only in (6) and
(7),

• ( ) is independent of the value of the constant con-
ductivity in the half space.

Note that the above field properties are also valid for a
horizontally layered conductor, i.e. for a conductivity σ =
σ (z).

Now the Hosaka-Cohen transformation (3) is applied to
(8) and yields

Particularly for X = 0, Y = 0, i.e. directly above the current
dipole, one obtains

In this case  is directly proportional to the x-y-projection

of the current dipole moment .

This supports the argument that the Hosaka-Cohen trans-
formation is really related to the underlying current
source. However, it is also evident from (9) that addi-
tional terms are blurring and distorting the image.

On first sight the distribution of arrows might suggest that
this is an image not only of the current dipole but also of
the return currents (also termed: volume currents). And
indeed, the model "dipole current in a conductive half
space" considers the role of the return currents. However,
in this special geometry, the volume currents do not con-

tribute to Bz( )as can be seen above. It becomes also evi-

dent, that the spatial distribution of  away from X = 0, Y
= 0 does not represent the return currents if Z is varied.
Without loss in validity of equations (6)–(8) one may

consider that  is very close to the half space interface z =

0 and the measurement of Bz(x, y) is performed at differ-

ent distances approaching . In this theoretical case, the

image approximates in the limit (z - z0) = 0 a point-like

distribution with vanishing (x, y) apart from the origin
X = 0, Y = 0. However, the volume currents keep their
amplitude independently from z as only the measurement
device is moved and not the current dipole source. Thus
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the nature of the  – image is a point spread function of
non-radial symmetry.

A closer look to just one component (e.g. the x-compo-

nent) of  reveals that it is composed of two terms The spatial distribution of both terms is shown in Fig. 6 as
a solid line. While the first term – shown as a dotted line
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Spatial dependence of |p| along the symmetry axis orthogonal to the dipole directionFigure 6
Spatial dependence of | p| along the symmetry axis orthogonal to the dipole direction. Dashed line: refers to the first term in 
eq. (11); dotted line: refers to the second term in eq. (11); solid line: both terms. Same data as in Fig. 5, however the direction 
of the dipole is in x-direction.
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– is radially symmetric the second term is not. Along the
symmetry axis parallel to the direction of the dipole this
latter term is vanishing, see the dotted line in Fig. 6.
Unfortunately the second term is of the same order of
magnitude as the first term. Thus cx is not directly propor-
tional to px as the second term contains mixed terms.
However, it contributes a kind of focussing effect.

Current dipole in a conductive sphere

For a current dipole  at 0 in a conductive sphere simi-

lar relations can be obtained in terms of spherical coordi-

nates r, ϑ, j. The magnetic flux density outside the sphere
is given by [32]

with F = R(r R + ),  =  - 0, R = | |, r = | |, and

∇F = [r-1 R2 + R-1 ( ) + 2R +2r]  - [R + 2r + R-1

( )] 0.

This expression is valid for a conductivity profile σ = σ (r).

For the case of the dipole being positioned on the z-axis at

0 = (0, 0, z0) the radial component of ( ) becomes

with R = (r2 - 2 z0 r cosϑ + )1/2.

Then for the pseudo current density the following relation

gained from curl  in spherical coordinates may be
applied to (13) leading to

Particularly for ϑ = 0, i. e. directly above the current
dipole, one obtains

Thus the discussion of the results follows the same lines as
in the preceding chapter.

Pseudo current density maps for MNG and MEG 
recordings
In Fig. 7 isocontour and PCD-maps of an MNG recording
using 49 channels of a planar SQUID system are shown.
The centre of the system was placed over the lumbar spine
with a distance of approximately 8 cm between the mag-
netic sensors and leg nerves coming from the left leg enter-
ing the spine. The nerve response to electrical stimulation
at the ankle with amplitude of about 10 mA and duration
of 100 μs was recorded. 9.000 responses were averaged to
improve the pure signal-to-noise ratio. In Fig. 7, top, an
isocontour map of the Bz-field component 15 ms after the
stimulus and in Fig. 7, bottom, the corresponding PCD-
map are shown. Inspecting the isocontour map from Fig.
7 only a raw understanding of an underlying current and
its direction corresponding to the zero line of the map is
possible for an expert. The PCD-map allows a more intu-
itive conclusion that the underlying nerve current is
extremely extended and slightly curved.

Fig. 8 displays maps of an acoustically evoked MEG
recorded in a helmet system with 93 channels. The spher-
ical maps are unfolded, the nose is situated at the top, and
ears are at the right and left side, respectively. The meas-
urement recorded the brain response to acoustic stimula-
tion with a 1 kHz sinusoidal tone. 30 stimuli were
averaged. In Fig. 8, top, an isocontour map of the radial
field component at the occurrence of the maximum of the
response (about 100 ms after stimulus; termed "N100") is
shown and in Fig. 8, bottom, the corresponding PCD-
map. Using the isocontour map from Fig. 8 the number of
sources and their configuration cannot be concluded. On
the other hand from inspecting the PCD-map one can
conclude that two separate focal sources are active, one in
each hemisphere in the corresponding acoustic cortex.

Discussion
Alternative pseudo current density maps and 
corresponding hardware realizations

The Hosaka-Cohen transformation is nothing else but a
combination of partial derivatives of components of

( ). Planar gradiometers are hardware realizations that
provide an approximation of the partial derivative of

( ). Thus, the SQUID-chip introduced by [33], which
is a combination of x- and y-gradiometers, provides -if

wired accordingly- just the approximation of (x, y) (cf.
Fig. 9). Consequently, the software of the first SQUID-sys-
tems of that design contained a program called "arrow
mapper".
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Top: Bz-map of an electrically stimulated nerve signal recorded over the lumbar spine (contour step 1fT), and bottom: its HC-transformation (scale in fT/cm)Figure 7
Top: Bz-map of an electrically stimulated nerve signal recorded over the lumbar spine (contour step 1fT), and bottom: its HC-
transformation (scale in fT/cm).
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Top: Br-map of an acoustically stimulated (1 kHz) N100 signal (contour step 50fT), and bottom: its HC-transformation (scale in fT/cm)Figure 8
Top: Br-map of an acoustically stimulated (1 kHz) N100 signal (contour step 50fT), and bottom: its HC-transformation (scale in 
fT/cm).
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As mentioned before an interrelation between  and curl

 exists. Equation (4) may be rewritten as

For this case curl  can be written as a sum of three vec-

tors , , and  where  is identical to (3), i.e.

curl  =  +  +   (18)

with

.

Outside the body  +  +  = 0 due to curl  = 0. There-

fore  +  just cancel  and – (  + ) will provide the
same pseudo current density map as well!

In addition, if curl  = 0 then

and only 2 components Bx, By, or Bx, Bz, or By, Bz are nec-

essary to construct , , and .

For example, by exploiting relations (19) the three vectors
constructed with Bx, By yield

The last relation for  may be easily realized by another
SQUID-system hardware consisting of vertically oriented
planar gradiometers [34]. This system approximates the
partial derivative of By and Bx with respect to z. Thus also

with that system a direct acquisition of the pseudo current
density map is possible (cf. Fig. 10).

Finally, the newer vectormagnetometer systems [35,36]
also allow an appropriate combination of partial deriva-
tives leading to

Again, the same pseudo current density map occurs, but
the signal to noise ratio will be enhanced, as all three vec-

tor components of ( ) are utilized.

Visualizing dynamics by creating a sequence of pseudo 
current density maps for MCG data
The perception of dynamic phenomena is considerably
enhanced by viewing movies.
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Planar Bz-gradiometer as a hardware realization for perform-ing direct HC-transformations and the related difference quotientsFigure 9
Planar Bz-gradiometer as a hardware realization for perform-
ing direct HC-transformations and the related difference 
quotients.
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A sequence of frames might give an impression of what
can be expressed by a movie clip. Figs. 12 displays such a
sequence of frames showing the evolution of PCD-maps
gained from the multichannel MCG during a heart beat of
a healthy volunteer. Due to the higher dynamics during
the QRS-complex the frame rate is higher there than dur-
ing the ST-phase. The start of the activation sequence in
the septum, the downwards propagation to the apex, and
the following depolarization (Figs. 11 and 12) are visible
as it is expected from textbook knowledge. The corre-
sponding movie is attached as an additional data file (see
Additional file 1).

It is obvious that a PCD-map at the end of the T-wave may
serve more consistently for evaluating dispersion of repo-
larization (Fig. 14) than a Bz-map with its zero-isofield-
line.

Another interesting aspect is the difference in spatial field
configuration between end of the T-wave and the U-wave.

The real nature of the U-wave is still under debate. But any
hypothesis should consider the fact shown here (and con-
firmed in many other cases) that the spatial origin of the
excitation that generates the ECG or MCG at the end of the
T-wave differs markedly from that of the U-wave (Figs. 13
and 14).

Conclusion
In this work we presented examples of electrophysiologi-
cal measurements where the use of PCD-maps is mean-
ingful. PCD-maps allow in these selected cases an
estimate of the underlying currents and also of the tempo-
ral behavior of the current propagation. On the other
hand, the PCD-maps are only a 2D-presentation of a 3D-
current distribution and may deviate considerable from
the real current distribution.

We described the analytical basis of PCD-maps and
showed that there exist alternative PCD-map presenta-
tions if other field components then Bz are also taken into
account. Additionally we extended the PCD-map method
to spherical coordinates as used in MEG.

PCD-maps are very interesting nowadays due to hardware
realizations by special designed coil configurations or vec-
tor magnetometers. Vector magnetometry allows the
recording of all magnetic field components and thus the
direct realization of all proposed PCD-map cases.

The advantages of pseudo current density maps besides
their intuitive character ("maximum signal is where the
action is") are their model- and hardware-independence.
While sophisticated inverse methods and filter techniques
(e.g. the synthetic aperture beamformer [37]) may lead to
more exact results with respect to the real current density
distribution, they are hard to validate and require
advanced data processing. In multicentric clinical studies,
where comparability of measurement results between dif-
ferent groups is a key issue, PCD-maps might serve as a
basis to exchange results. PCD-maps from such different
SQUID-systems as those with planar horizontal, planar
vertical magnetometers or gradiometers, or vectormagne-
tometers differ only slightly and are still traceable back to
the original measurement results (up to an additive con-
stant).
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Planar vertical gradiometers as a hardware realization for performing direct HC-transformations and the related differ-ence quotientsFigure 10
Planar vertical gradiometers as a hardware realization for 
performing direct HC-transformations and the related differ-
ence quotients.
Page 13 of 18
(page number not for citation purposes)



BioMagnetic Research and Technology 2006, 4:5 http://www.biomagres.com/content/4/1/5

Page 14 of 18
(page number not for citation purposes)

Butterfly plot of a multichannel magnetocardiogramFigure 11
Butterfly plot of a multichannel magnetocardiogram. The cursors indicate the time instants of the frames in Fig. 12.
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Frames of a video-sequence of pseudo current density maps during the QRS-complexFigure 12
Frames of a video-sequence of pseudo current density maps during the QRS-complex.
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Butterfly plot of a multichannel magnetocardiogramFigure 13
Butterfly plot of a multichannel magnetocardiogram. The cursors indicate the time instants of the frames in Fig. 14.



BioMagnetic Research and Technology 2006, 4:5 http://www.biomagres.com/content/4/1/5
Authors' contributions
WH: theory, mathematics

US: critical revision and supportive contributions

MB: critical revision, chapter on MNG and MEG record-
ings

OK: critical revision, results of MCG-investigations

AM: clinical investigation and support

HK: corresponding author, drafting of the manuscript, vis-
ualization, animation, and final approval

Additional material

Acknowledgements
The biomagnetic measurements for the example MCG-signal were 
obtained in a study described in reference 38. The medical writer of this 
paper (A.M.) was the responsible medical investigator of that study which 

had been funded by the German Federal Ministry for Education, Research 
and Technology under Grant No. 01 KX 9912/8.

References
1. Cohen D, Lepeschkin E, Hosaka H, Massell B, Myers G: Part I —

Abnormal Patterns and Physiological Variations in Magneto-
cardiograms.  J Electrocardiol 1976, 9:398-409.

2. Cohen D, Hosaka H: Part II — Magnetic Field Produced by a
Current Dipole.  J Electrocardiol 1976, 9:409-417.

3. Hosaka H, Cohen D, Cuffin BN, Horacek BM: Part III — The Effect
of the Torso Boundaries on the Magnetocardiogram.  J Elec-
trocardiol 1976, 9:418-425.

4. Hosaka H, Cohen D: Part IV — Visual Determination of Gen-
erators of the Magnetocardiogram.  J Electrocardiol 1976,
9:426-432.

5. Wikswo JP: The Magnetic Inverse Problem for NDE.  In SQUID
Sensors: Fundamentals, Fabrication and Applications Edited by: Wein-
stock H. Dordrecht: Kluwer Academic Publishers; 1996:629-695. 

6. Tan S: Linear System Imaging and its Applications to Mag-
netic Measurements by SQUID Magnetometers.  In PhD disser-
tation Department of Physics and Astronomy, Vanderbilt University;
1992. 

7. Miyashita T, Kandori A, Tsukada K, Sato M, Terada Y, Horigome H,
Mitsui T: Construction of Tangential Vectors from Normal
Cardiac Magnetic Field Components.  Proc 20th Ann Int Conf
IEEE/EMBS Oct. 29-Nov.1, Hong Kong 1998:520-523.

8. Hailer B, Chaikovsky I, Auth-Eisernitz S, Schäfer H, Steinberg F,
Grönemeyer DHW: Magnetocardiography in Coronary Artery
Disease with a New System in an Unshielded Setting.  Clin Car-
diol 2003, 26:465-471.

9. Nenonen J, Montonen J, Koskinen R: Surface Gradient Analysis of
Atrial Activation from Magnetocardiographic Maps.  Int J Bio-
electromagnetism 2003, 5:98-99.

10.  [http://www.cryoton.webzone.ru/softmcg.htm].
11. Hailer B, Van Leeuwen P, Chaikovsky I, Auth-Eisernitz S, Schäfer H,

Grönemeyer D: The value of magnetocardiography in the

Additional File 1
MCG-movies. The attached Power Point file "MCG-movies.ppt" contains 
movies (animated GIF; runs only in recent Power Point versions) of the 
map sequences partly shown in figures 2, 3, and 13.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1477-
044X-4-5-S1.ppt]

Frames of a video-sequence of pseudo current density maps during the T- and U-waveFigure 14
Frames of a video-sequence of pseudo current density maps during the T- and U-wave.
Page 17 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1477-044X-4-5-S1.ppt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=135816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=978094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=978094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=978095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=978095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=978096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=978096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579917
http://www.cryoton.webzone.ru/softmcg.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15842431


BioMagnetic Research and Technology 2006, 4:5 http://www.biomagres.com/content/4/1/5
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

course of coronary intervention.  Ann Noninvasive Electrocardiol
2005, 10(2):188-96.

12. Hailer B, Chaikovsky I, Auth-Eisernitz S, Schafer H, Van Leeuwen P:
The value of magnetocardiography in patients with and with-
out relevant stenoses of the coronary arteries using an
unshielded system.  Pacing Clin Electrophysiol 2005, 28(1):8-16.

13. Koch H: Recent advances in magnetocardiography.  J Electro-
cardiol 2004, 37(Suppl):117-22.

14. Kandori A, Shimizu W, Yokokawa M, Kamakura S, Miyatake K,
Murakami M, Miyashita T, Ogata K, Tsukada K: Reconstruction of
action potential of repolarization in patients with congenital
long-QT syndrome.  Phys Med Biol 2004, 49(10):2103-15.

15. Kandori A, Shimizu W, Yokokawa M, Noda T, Kamakura S, Miyatake
K, Murakami M, Miyashita T, Ogata K, Tsukada K: Identifying pat-
terns of spatial current dispersion that characterise and sep-
arate the Brugada syndrome and complete right-bundle
branch block.  Med Biol Eng Comput 2004, 42(2):236-44.

16. Kandori A, Shimizu W, Yokokawa M, Maruo T, Kanzaki H, Nakatani
S, Kamakura S, Miyatake K, Murakami M, Miyashita T, Ogata K, Tsu-
kada K: Detection of spatial repolarization abnormalities in
patients with LQT1 and LQT2 forms of congenital long-QT
syndrome.  Physiol Meas 2002, 23(4):603-14.

17. Sato M, Terada Y, Mitsui T, Miyashita T, Kandori A, Tsukada K: Vis-
ualization of atrial excitation by magnetocardiogram.  Int J
Cardiovasc Imaging 2002, 18(4):305-12.

18. Kandori A, Kanzaki H, Miyatake K, Hashimoto S, Itoh S, Tanaka N,
Miyashita T, Tsukada K: A method for detecting myocardial
abnormality by using a current-ratio map calculated from an
exercise-induced magnetocardiogram.  Med Biol Eng Comput
2001, 39(1):29-34.

19. Tsukada K, Miyashita T, Kandori A, Mitsui T, Terada Y, Sato M,
Shiono J, Horigome H, Yamada S, Yamaguchi I: An iso-integral
mapping technique using magnetocardiogram, and its possi-
ble use for diagnosis of ischemic heart disease.  Int J Card Imag-
ing 2000, 16(1):55-66.

20. Kandori A, Kanzaki H, Miyatake K, Hashimoto S, Itoh S, Tanaka N,
Miyashita T, Tsukada K: A method for detecting myocardial
abnormality by using a total current-vector calculated from
ST-segment deviation of a magnetocardiogram signal.  Med
Biol Eng Comput 2001, 39(1):21-8.

21. Weber Dos Santos R, Kosch O, Steinhoff U, Bauer S, Trahms L, Koch
H: MCG to ECG source differences: measurements and a
two-dimensional computer model study.  J Electrocardiol 2004,
37(Suppl):123-7.

22. Kandori A, Miyashita T, Tsukada K, Hosono T, Miyashita S, Chiba Y,
Horigome H, Shigemitsu S, Asaka M: Prenatal diagnosis of QT
prolongation by fetal magnetocardiogram – use of QRS and
T-wave current-arrow maps.  Physiol Meas 2001, 22(2):377-87.

23. Kandori A, Hosono T, Kanagawa T, Miyashita S, Chiba Y, Murakami
M, Miyashita T, Tsukada K: Detection of atrial-flutter and atrial-
fibrillation waveforms by fetal magnetocardiogram.  Med Biol
Eng Comput 2002, 40(2):213-7.

24. Hosono T, Shinto M, Chiba Y, Kandori A, Tsukada K: Prenatal diag-
nosis of fetal complete atrioventricular block with QT pro-
longation and alternating ventricular pacemakers using
multi-channel magnetocardiography and current-arrow
maps.  Fetal Diagn Ther 2002, 17(3):173-6.

25. Kandori A, Oe H, Miyashita K, Ohira S, Naritomi H, Chiba Y, Ogata
K, Murakami M, Miyashita T, Tsukada K: Magneto-encephalo-
graphic measurement of neural activity during period of ver-
tigo induced by cold caloric stimulation.  Neurosci Res 2003,
46(3):281-8.

26. Oe H, Kandori A, Murakami M, Miyashita K, Tsukada K, Naritomi H:
Cortical functional abnormality assessed by auditory-evoked
magnetic fields and therapeutic approach in patients with
chronic dizziness.  Brain Res 2002, 957(2):373-81.

27. Kandori A, Oe H, Miyashita K, Date H, Yamada N, Naritomi H, Chiba
Y, Murakami M, Miyashita T, Tsukada K: Visualisation method of
spatial interictal discharges in temporal epilepsy patients
using magneto-encephalogram.  Med Biol Eng Comput 2002,
40(3):327-31.

28. Burghoff M, Mackert BM, Haberkorn W: Visualization of action
currents in peripheral nerves from the biomagnetic field.
Biomed Tech 2005, 50(Suppl 1/1):179-80.

29. Koch H: SQUID Magnetocardiography: Status and Perspec-
tives.  IEEE Trans Appl Superconductivity 2001, 11:49-59.

30. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa O: Mag-
netoencephalography – Theory, Instrumentation, and Appli-
cations to Noninvasive Studies of the Working Human
Brain.  Rev Mod Phys 1993, 65:413-497.

31. Kosch O, Burghoff M, Jazbinsek V, Steinhoff U, Trontelj Z, Trahms L:
Extended source models in integrated body surface poten-
tial and magnetic field mapping.  Biomed Eng 2001, 46(Suppl
2):144-146.

32. Sarvas J: Basic Mathematical and Electromagnetic Concepts
of the Biomagnetic Inverse Problem.  Phys Med Biol 1987,
32:11-22.

33. Hämäläinen MS: A 24-Channel Planar Gradiometer: System
Design and Analysis of Neuromagnetic Data.  In Advances in
Biomagnetism Edited by: Williamson SJ, Hoke M, Stroink G, Kotani M.
New York: Plenum Press; 1989:639-644. 

34. Kandori A, Tsukada K, Haruta Y, Noda Y, Terada Y, Mitsui T, Seki-
hara K: Reconstruction of two-dimensional Current Distribu-
tion from Tangential MCG measurement.  Phys Med Biol 1996,
41:1705-1716.

35. Burghoff M, Schleyerbach H, Drung D, Trahms L, Koch H: A Vector
Magnetometer Module for Biomagnetic Application.  IEEE
Trans Appl Superconductivity 1999, 9:4069-4072.

36. Stolz R, Zakosarenko V, Schulz M, Chwala A, Fritzsch L, Meyer HG,
Koestlin EO: Magnetic full-tensor SQUID gradiometer system
for geophysical applications.  The Leading Edge 2006,
25(2):178-180.

37. Robinson SE, Vrba J: Functional Neuroimaging by Synthetic
Aperture Magnetometry (SAM).  In Recent Advances in Biomag-
netism, Proc 11th Int Conf Biomagnetism Edited by: Yoshimoto T, Kotani
M, Kuriki S, Karibe H, Nakasato N. Sendai: Tohoku University Press;
1999:302-305. 

38. Morguet A, Behrens S, Kosch O, Lange C, Zabel M, Selbig D, Munz
DL, Schultheiss HP, Koch H: Myocardial Viability Evaluation
using Magnetocardiography in Patients with Coronary
Artery Disease.  Coronary Artery Disease 2004, 15(3):155-162.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15842431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15660796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15660796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15660796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15534820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15214545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15214545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15214545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15125155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15125155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15125155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12450262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12450262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12450262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12123324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12123324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11214270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11214270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11214270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10832626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10832626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10832626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11214269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11214269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11214269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15534821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15534821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11411247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11411247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11411247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12043803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12043803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12195980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12195980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12195980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3823129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3823129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8884907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8884907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096996
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Construction of pseudo current density maps

	Results
	Pseudo current density maps of analytically solvable models
	Current dipole in a conductive half space
	Current dipole in a conductive sphere

	Pseudo current density maps for MNG and MEG recordings

	Discussion
	Alternative pseudo current density maps and corresponding hardware realizations
	Visualizing dynamics by creating a sequence of pseudo current density maps for MCG data

	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

